Solving CVRP with ACO
Minimizing Travel Cost for Complex Delivery Problems
This scenario involves the Capacitated Vehicle Routing Problem,
solved using the meta-heuristics algorithm Ant Colony Optimization. Basically, VRP is a network consisting of a number of nodes
(sometimes called cities) and arcs connecting one to all others along with the corresponding costs.
Mostly, the aim is to minimize the cost in visiting each customer once and only once. The term
"capacitated" is added due to some capacity constraints on the vehicles (vcap).
Enter the problem. Some company wants to deliver loads to a number of customers. In this case, we
have 24 nodes based on the location of Germany's train stations (don't ask why). The delivery
always starts from and ends at the depot, visiting a list of customers in other cities. And then
a number of questions arise:
- How do we minimize the travel cost in terms of distance?
- How many trucks are required?
- Which cities are visited by the truck #1, #2. etc.?
- depot: [0..23], def = 0
- vcap: [200..400], def = 400
There is a way to set all the demands, but I don't think you are ready for that. 😉
VCAP: 400 vol.
ACTIVE: 22 customers
- Düsseldorf Hbf (65 vol.)
- Frankfurt Hbf (90 vol.)
- Hannover Hbf (55 vol.)
- Aachen Hbf (45 vol.)
- Stuttgart Hbf (95 vol.)
- Dresden Hbf (60 vol.)
- Hamburg Hbf (70 vol.)
- München Hbf (20 vol.)
- Bremen Hbf (55 vol.)
- Leipzig Hbf (60 vol.)
- Dortmund Hbf (60 vol.)
- Nürnberg Hbf (70 vol.)
- Karlsruhe Hbf (100 vol.)
- Ulm Hbf (60 vol.)
- Köln Hbf (20 vol.)
- Mannheim Hbf (100 vol.)
- Kiel Hbf (20 vol.)
- Mainz Hbf (35 vol.)
- Würzburg Hbf (50 vol.)
- Saarbrücken Hbf (45 vol.)
- Osnabrück Hbf (100 vol.)
- Freiburg Hbf (75 vol.)
Tour 1
COST: 985.482 km
LOAD: 400 vol.
- Frankfurt Hbf | 90 vol.
- Mainz Hbf | 35 vol.
- Mannheim Hbf | 100 vol.
- Karlsruhe Hbf | 100 vol.
- Freiburg Hbf | 75 vol.
Tour 2
COST: 1510.77 km
LOAD: 385 vol.
- Würzburg Hbf | 50 vol.
- Nürnberg Hbf | 70 vol.
- München Hbf | 20 vol.
- Ulm Hbf | 60 vol.
- Stuttgart Hbf | 95 vol.
- Saarbrücken Hbf | 45 vol.
- Aachen Hbf | 45 vol.
Tour 3
COST: 1232.607 km
LOAD: 390 vol.
- Hamburg Hbf | 70 vol.
- Kiel Hbf | 20 vol.
- Bremen Hbf | 55 vol.
- Osnabrück Hbf | 100 vol.
- Dortmund Hbf | 60 vol.
- Düsseldorf Hbf | 65 vol.
- Köln Hbf | 20 vol.
Tour 4
COST: 931.522 km
LOAD: 175 vol.
- Dresden Hbf | 60 vol.
- Leipzig Hbf | 60 vol.
- Hannover Hbf | 55 vol.
LOAD: 400 vol.
- Frankfurt Hbf | 90 vol.
- Mainz Hbf | 35 vol.
- Mannheim Hbf | 100 vol.
- Karlsruhe Hbf | 100 vol.
- Freiburg Hbf | 75 vol.
LOAD: 385 vol.
- Würzburg Hbf | 50 vol.
- Nürnberg Hbf | 70 vol.
- München Hbf | 20 vol.
- Ulm Hbf | 60 vol.
- Stuttgart Hbf | 95 vol.
- Saarbrücken Hbf | 45 vol.
- Aachen Hbf | 45 vol.
LOAD: 390 vol.
- Hamburg Hbf | 70 vol.
- Kiel Hbf | 20 vol.
- Bremen Hbf | 55 vol.
- Osnabrück Hbf | 100 vol.
- Dortmund Hbf | 60 vol.
- Düsseldorf Hbf | 65 vol.
- Köln Hbf | 20 vol.
LOAD: 175 vol.
- Dresden Hbf | 60 vol.
- Leipzig Hbf | 60 vol.
- Hannover Hbf | 55 vol.
#generations: 10 for global, 5 for local
#ants: 5 times #active_customers
ACO
Rel. importance of pheromones α = 1.0
Rel. importance of visibility β = 10.0
Trail persistance ρ = 0.5
Pheromone intensity Q = 10
See this wikipedia page to learn more.
NETWORK Depo: [0] Kassel-Wilhelmshöhe | Number of cities: 24 | Total loads: 1350 vol. | Vehicle capacity: 400 vol. Loads: [0, 0, 65, 90, 55, 45, 95, 60, 70, 20, 55, 60, 60, 70, 100, 60, 20, 100, 20, 35, 50, 45, 100, 75] ITERATION Generation: #1 Best cost: 5614.257 | Path: [0, 2, 16, 5, 12, 22, 10, 4, 0, 20, 13, 14, 17, 19, 21, 0, 3, 6, 15, 9, 23, 11, 0, 8, 18, 7, 0] Best cost: 5362.808 | Path: [0, 12, 2, 16, 5, 22, 10, 4, 0, 20, 13, 9, 15, 6, 14, 0, 19, 3, 17, 21, 23, 18, 0, 11, 7, 8, 0] Best cost: 5309.812 | Path: [0, 14, 17, 3, 19, 20, 9, 0, 4, 10, 8, 18, 22, 12, 16, 0, 2, 5, 21, 23, 6, 15, 0, 13, 11, 7, 0] Best cost: 5158.906 | Path: [0, 16, 2, 12, 22, 10, 8, 18, 0, 20, 13, 9, 15, 6, 14, 0, 3, 19, 17, 21, 5, 4, 0, 11, 7, 23, 0] Best cost: 4850.382 | Path: [0, 23, 14, 6, 15, 9, 20, 0, 19, 3, 17, 21, 16, 2, 5, 0, 4, 22, 10, 8, 18, 12, 0, 11, 7, 13, 0] Generation: #2 Best cost: 4775.295 | Path: [0, 18, 8, 10, 22, 12, 2, 16, 0, 20, 13, 9, 15, 6, 14, 0, 3, 19, 17, 21, 23, 5, 0, 4, 11, 7, 0] Generation: #3 Best cost: 4737.416 | Path: [0, 3, 19, 17, 14, 23, 0, 20, 13, 9, 15, 6, 21, 5, 0, 12, 2, 16, 18, 8, 10, 22, 0, 4, 11, 7, 0] Generation: #5 Best cost: 4666.346 | Path: [0, 3, 19, 17, 14, 23, 0, 20, 13, 9, 15, 6, 21, 5, 0, 12, 2, 16, 22, 10, 8, 18, 0, 4, 11, 7, 0] OPTIMIZING each tour... Current: [[0, 3, 19, 17, 14, 23, 0], [0, 20, 13, 9, 15, 6, 21, 5, 0], [0, 12, 2, 16, 22, 10, 8, 18, 0], [0, 4, 11, 7, 0]] [3] Cost: 1235.845 to 1232.607 | Optimized: [0, 8, 18, 10, 22, 12, 2, 16, 0] [4] Cost: 934.249 to 931.522 | Optimized: [0, 7, 11, 4, 0] ACO RESULTS [1/400 vol./ 985.482 km] Kassel-Wilhelmshöhe -> Frankfurt Hbf -> Mainz Hbf -> Mannheim Hbf -> Karlsruhe Hbf -> Freiburg Hbf --> Kassel-Wilhelmshöhe [2/385 vol./1510.770 km] Kassel-Wilhelmshöhe -> Würzburg Hbf -> Nürnberg Hbf -> München Hbf -> Ulm Hbf -> Stuttgart Hbf -> Saarbrücken Hbf -> Aachen Hbf --> Kassel-Wilhelmshöhe [3/390 vol./1232.607 km] Kassel-Wilhelmshöhe -> Hamburg Hbf -> Kiel Hbf -> Bremen Hbf -> Osnabrück Hbf -> Dortmund Hbf -> Düsseldorf Hbf -> Köln Hbf --> Kassel-Wilhelmshöhe [4/175 vol./ 931.522 km] Kassel-Wilhelmshöhe -> Dresden Hbf -> Leipzig Hbf -> Hannover Hbf --> Kassel-Wilhelmshöhe OPTIMIZATION RESULT: 4 tours | 4660.381 km.