Solving CVRP with ACO
Minimizing Travel Cost for Complex Delivery Problems
This scenario involves the Capacitated Vehicle Routing Problem,
solved using the meta-heuristics algorithm Ant Colony Optimization. Basically, VRP is a network consisting of a number of nodes
(sometimes called cities) and arcs connecting one to all others along with the corresponding costs.
Mostly, the aim is to minimize the cost in visiting each customer once and only once. The term
"capacitated" is added due to some capacity constraints on the vehicles (vcap).
Enter the problem. Some company wants to deliver loads to a number of customers. In this case, we
have 24 nodes based on the location of Germany's train stations (don't ask why). The delivery
always starts from and ends at the depot, visiting a list of customers in other cities. And then
a number of questions arise:
- How do we minimize the travel cost in terms of distance?
- How many trucks are required?
- Which cities are visited by the truck #1, #2. etc.?
- depot: [0..23], def = 0
- vcap: [200..400], def = 400
There is a way to set all the demands, but I don't think you are ready for that. 😉
VCAP: 400 vol.
ACTIVE: 19 customers
- Berlin Hbf (25 vol.)
- Düsseldorf Hbf (100 vol.)
- Frankfurt Hbf (100 vol.)
- Hannover Hbf (85 vol.)
- Aachen Hbf (20 vol.)
- Stuttgart Hbf (60 vol.)
- Dresden Hbf (75 vol.)
- Hamburg Hbf (65 vol.)
- München Hbf (50 vol.)
- Leipzig Hbf (95 vol.)
- Dortmund Hbf (80 vol.)
- Karlsruhe Hbf (100 vol.)
- Ulm Hbf (20 vol.)
- Mannheim Hbf (70 vol.)
- Kiel Hbf (95 vol.)
- Mainz Hbf (50 vol.)
- Saarbrücken Hbf (80 vol.)
- Osnabrück Hbf (100 vol.)
- Freiburg Hbf (40 vol.)
Tour 1
COST: 1523.121 km
LOAD: 390 vol.
- Stuttgart Hbf | 60 vol.
- Ulm Hbf | 20 vol.
- München Hbf | 50 vol.
- Freiburg Hbf | 40 vol.
- Karlsruhe Hbf | 100 vol.
- Mannheim Hbf | 70 vol.
- Mainz Hbf | 50 vol.
Tour 2
COST: 952.76 km
LOAD: 380 vol.
- Frankfurt Hbf | 100 vol.
- Saarbrücken Hbf | 80 vol.
- Aachen Hbf | 20 vol.
- Düsseldorf Hbf | 100 vol.
- Dortmund Hbf | 80 vol.
Tour 3
COST: 1356.365 km
LOAD: 355 vol.
- Hamburg Hbf | 65 vol.
- Kiel Hbf | 95 vol.
- Berlin Hbf | 25 vol.
- Dresden Hbf | 75 vol.
- Leipzig Hbf | 95 vol.
Tour 4
COST: 494.425 km
LOAD: 185 vol.
- Osnabrück Hbf | 100 vol.
- Hannover Hbf | 85 vol.
LOAD: 390 vol.
- Stuttgart Hbf | 60 vol.
- Ulm Hbf | 20 vol.
- München Hbf | 50 vol.
- Freiburg Hbf | 40 vol.
- Karlsruhe Hbf | 100 vol.
- Mannheim Hbf | 70 vol.
- Mainz Hbf | 50 vol.
LOAD: 380 vol.
- Frankfurt Hbf | 100 vol.
- Saarbrücken Hbf | 80 vol.
- Aachen Hbf | 20 vol.
- Düsseldorf Hbf | 100 vol.
- Dortmund Hbf | 80 vol.
LOAD: 355 vol.
- Hamburg Hbf | 65 vol.
- Kiel Hbf | 95 vol.
- Berlin Hbf | 25 vol.
- Dresden Hbf | 75 vol.
- Leipzig Hbf | 95 vol.
LOAD: 185 vol.
- Osnabrück Hbf | 100 vol.
- Hannover Hbf | 85 vol.
#generations: 10 for global, 5 for local
#ants: 5 times #active_customers
ACO
Rel. importance of pheromones α = 1.0
Rel. importance of visibility β = 10.0
Trail persistance ρ = 0.5
Pheromone intensity Q = 10
See this wikipedia page to learn more.
NETWORK Depo: [0] Kassel-Wilhelmshöhe | Number of cities: 24 | Total loads: 1310 vol. | Vehicle capacity: 400 vol. Loads: [0, 25, 100, 100, 85, 20, 60, 75, 65, 50, 0, 95, 80, 0, 100, 20, 0, 70, 95, 50, 0, 80, 100, 40] ITERATION Generation: #1 Best cost: 5215.857 | Path: [0, 1, 11, 7, 4, 22, 5, 0, 3, 19, 17, 14, 6, 15, 0, 12, 2, 21, 23, 9, 0, 8, 18, 0] Best cost: 4980.382 | Path: [0, 3, 19, 17, 14, 6, 15, 0, 12, 2, 5, 21, 23, 9, 1, 0, 4, 22, 8, 18, 0, 11, 7, 0] Best cost: 4907.035 | Path: [0, 15, 6, 14, 17, 3, 19, 0, 12, 2, 5, 22, 4, 0, 21, 23, 9, 7, 11, 1, 0, 8, 18, 0] Best cost: 4891.858 | Path: [0, 15, 6, 14, 17, 19, 3, 0, 12, 2, 5, 21, 23, 9, 1, 0, 22, 4, 8, 18, 0, 11, 7, 0] Best cost: 4857.790 | Path: [0, 9, 15, 6, 14, 17, 3, 0, 12, 2, 5, 22, 4, 0, 19, 21, 23, 7, 11, 1, 0, 8, 18, 0] Best cost: 4717.921 | Path: [0, 23, 17, 14, 6, 15, 9, 19, 0, 12, 2, 5, 21, 3, 0, 22, 4, 8, 18, 1, 0, 11, 7, 0] Best cost: 4677.338 | Path: [0, 23, 14, 6, 15, 9, 17, 19, 0, 3, 21, 5, 2, 12, 0, 4, 22, 8, 18, 1, 0, 11, 7, 0] Generation: #2 Best cost: 4597.692 | Path: [0, 17, 14, 6, 15, 9, 23, 19, 0, 12, 2, 5, 21, 3, 0, 22, 4, 8, 18, 1, 0, 11, 7, 0] Generation: #3 Best cost: 4413.192 | Path: [0, 17, 14, 6, 15, 9, 23, 19, 0, 3, 21, 5, 2, 12, 0, 11, 7, 1, 8, 18, 0, 4, 22, 0] OPTIMIZING each tour... Current: [[0, 17, 14, 6, 15, 9, 23, 19, 0], [0, 3, 21, 5, 2, 12, 0], [0, 11, 7, 1, 8, 18, 0], [0, 4, 22, 0]] [1] Cost: 1571.763 to 1523.121 | Optimized: [0, 6, 15, 9, 23, 14, 17, 19, 0] [3] Cost: 1390.933 to 1356.365 | Optimized: [0, 8, 18, 1, 7, 11, 0] [4] Cost: 497.736 to 494.425 | Optimized: [0, 22, 4, 0] ACO RESULTS [1/390 vol./1523.121 km] Kassel-Wilhelmshöhe -> Stuttgart Hbf -> Ulm Hbf -> München Hbf -> Freiburg Hbf -> Karlsruhe Hbf -> Mannheim Hbf -> Mainz Hbf --> Kassel-Wilhelmshöhe [2/380 vol./ 952.760 km] Kassel-Wilhelmshöhe -> Frankfurt Hbf -> Saarbrücken Hbf -> Aachen Hbf -> Düsseldorf Hbf -> Dortmund Hbf --> Kassel-Wilhelmshöhe [3/355 vol./1356.365 km] Kassel-Wilhelmshöhe -> Hamburg Hbf -> Kiel Hbf -> Berlin Hbf -> Dresden Hbf -> Leipzig Hbf --> Kassel-Wilhelmshöhe [4/185 vol./ 494.425 km] Kassel-Wilhelmshöhe -> Osnabrück Hbf -> Hannover Hbf --> Kassel-Wilhelmshöhe OPTIMIZATION RESULT: 4 tours | 4326.671 km.