Solving CVRP with ACO

Minimizing Travel Cost for Complex Delivery Problems

Start With The Story

This scenario involves the Capacitated Vehicle Routing Problem, solved using the meta-heuristics algorithm Ant Colony Optimization. Basically, VRP is a network consisting of a number of nodes (sometimes called cities) and arcs connecting one to all others along with the corresponding costs. Mostly, the aim is to minimize the cost in visiting each customer once and only once. The term "capacitated" is added due to some capacity constraints on the vehicles (vcap).

Enter the problem. Some company wants to deliver loads to a number of customers. In this case, we have 24 nodes based on the location of Germany's train stations (don't ask why). The delivery always starts from and ends at the depot, visiting a list of customers in other cities. And then a number of questions arise:

  • How do we minimize the travel cost in terms of distance?
  • How many trucks are required?
  • Which cities are visited by the truck #1, #2. etc.?
Such questions are addressed by employing the ants.

How to use this page?
Two parameters can be adjusted:
  • depot: [0..23], def = 0
  • vcap: [200..400], def = 400
Calling this page without parameter will get the defaults. Otherwise, just try something like this

There is a way to set all the demands, but I don't think you are ready for that. 😉
Map
DEPOT: Berlin Hbf
VCAP: 300 vol.

ACTIVE: 20 customers
  1. Kassel-Wilhelmshöhe (65 vol.)
  2. Düsseldorf Hbf (70 vol.)
  3. Frankfurt Hbf (55 vol.)
  4. Hannover Hbf (35 vol.)
  5. Aachen Hbf (55 vol.)
  6. Dresden Hbf (25 vol.)
  7. Hamburg Hbf (65 vol.)
  8. München Hbf (100 vol.)
  9. Leipzig Hbf (95 vol.)
  10. Dortmund Hbf (45 vol.)
  11. Nürnberg Hbf (65 vol.)
  12. Karlsruhe Hbf (45 vol.)
  13. Ulm Hbf (60 vol.)
  14. Köln Hbf (45 vol.)
  15. Mannheim Hbf (100 vol.)
  16. Kiel Hbf (85 vol.)
  17. Mainz Hbf (95 vol.)
  18. Würzburg Hbf (65 vol.)
  19. Osnabrück Hbf (70 vol.)
  20. Freiburg Hbf (25 vol.)
Result
OVERALL | #TOURS: 5 | COST: 6857.639 km | LOAD: 1265 vol. | VCAP: 300 vol.
Tour 1
COST: 1358.672 km
LOAD: 285 vol.

  1. Dortmund Hbf | 45 vol.
  2. Düsseldorf Hbf | 70 vol.
  3. Köln Hbf | 45 vol.
  4. Aachen Hbf | 55 vol.
  5. Osnabrück Hbf | 70 vol.

Tour 2
COST: 1047.948 km
LOAD: 280 vol.

  1. Leipzig Hbf | 95 vol.
  2. Hannover Hbf | 35 vol.
  3. Hamburg Hbf | 65 vol.
  4. Kiel Hbf | 85 vol.

Tour 3
COST: 1898.212 km
LOAD: 255 vol.

  1. Dresden Hbf | 25 vol.
  2. München Hbf | 100 vol.
  3. Ulm Hbf | 60 vol.
  4. Karlsruhe Hbf | 45 vol.
  5. Freiburg Hbf | 25 vol.

Tour 4
COST: 1261.152 km
LOAD: 280 vol.

  1. Würzburg Hbf | 65 vol.
  2. Frankfurt Hbf | 55 vol.
  3. Mainz Hbf | 95 vol.
  4. Kassel-Wilhelmshöhe | 65 vol.

Tour 5
COST: 1291.655 km
LOAD: 165 vol.

  1. Mannheim Hbf | 100 vol.
  2. Nürnberg Hbf | 65 vol.

ANTS
#generations: 10 for global, 5 for local
#ants: 5 times #active_customers

ACO
Rel. importance of pheromones α = 1.0
Rel. importance of visibility β = 10.0
Trail persistance ρ = 0.5
Pheromone intensity Q = 10

See this wikipedia page to learn more.

What kind of cost?
Directed driving distance, obtained through Google API. The visualization does not display that since the idea is VRP. Adding such feature is very easy, but not a priority for this case.
Can we use any address?
Yes, absolutely. What we need is the geo-coordinates of the addresses, and the distance matrix, which is not a problem. See my oldie master thesis here, implemented using PHP/MySQL for a delivery case in Darmstadt city, Germany.
Travel time as the cost?
Just replace the distance matrix with a duration matrix, then it is done. Please keep in mind, this feature is not intended for realtime use. But regarding the idea, not an issue.
Up to how many nodes?
There is no definitive answer for that. However, if a large number of nodes involved, a good strategy is required. Actually, for this one, a suitable technique is already implemented instead of a "plain" ACO.

NETWORK
Depo: [1] Berlin Hbf | Number of cities: 24 | Total loads: 1265 vol. | Vehicle capacity: 300 vol.
Loads: [65, 0, 70, 55, 35, 55, 0, 25, 65, 100, 0, 95, 45, 65, 45, 60, 45, 100, 85, 95, 65, 0, 70, 25]

ITERATION
Generation: #1
Best cost: 7874.973 | Path: [1, 0, 12, 2, 16, 5, 1, 11, 7, 13, 20, 14, 1, 4, 8, 18, 22, 23, 1, 3, 19, 17, 1, 15, 9, 1]
Best cost: 7799.288 | Path: [1, 2, 16, 5, 12, 22, 1, 7, 11, 13, 20, 14, 1, 4, 8, 18, 0, 23, 1, 3, 19, 17, 1, 9, 15, 1]
Best cost: 7357.428 | Path: [1, 5, 16, 2, 12, 22, 1, 11, 7, 0, 4, 8, 1, 18, 17, 14, 23, 1, 20, 13, 9, 15, 1, 19, 3, 1]
Best cost: 7249.645 | Path: [1, 18, 8, 4, 22, 12, 1, 7, 11, 0, 19, 1, 3, 17, 14, 23, 15, 1, 13, 20, 16, 2, 5, 1, 9, 1]
Best cost: 7238.127 | Path: [1, 17, 14, 23, 15, 20, 1, 11, 7, 13, 9, 1, 8, 18, 4, 22, 12, 1, 0, 3, 19, 2, 1, 16, 5, 1]
Best cost: 7189.182 | Path: [1, 9, 15, 14, 23, 3, 1, 11, 7, 13, 20, 4, 1, 8, 18, 22, 12, 1, 0, 19, 17, 1, 16, 2, 5, 1]
Best cost: 7028.055 | Path: [1, 12, 2, 16, 5, 22, 1, 4, 8, 18, 11, 1, 7, 9, 15, 14, 23, 1, 0, 3, 19, 20, 1, 13, 17, 1]

OPTIMIZING each tour...
Current: [[1, 12, 2, 16, 5, 22, 1], [1, 4, 8, 18, 11, 1], [1, 7, 9, 15, 14, 23, 1], [1, 0, 3, 19, 20, 1], [1, 13, 17, 1]]
[2] Cost: 1212.410 to 1047.948 | Optimized: [1, 11, 4, 8, 18, 1]
[4] Cost: 1263.244 to 1261.152 | Optimized: [1, 20, 3, 19, 0, 1]
[5] Cost: 1295.517 to 1291.655 | Optimized: [1, 17, 13, 1]

ACO RESULTS
[1/285 vol./1358.672 km] Berlin Hbf -> Dortmund Hbf -> Düsseldorf Hbf -> Köln Hbf -> Aachen Hbf -> Osnabrück Hbf --> Berlin Hbf
[2/280 vol./1047.948 km] Berlin Hbf -> Leipzig Hbf -> Hannover Hbf -> Hamburg Hbf -> Kiel Hbf --> Berlin Hbf
[3/255 vol./1898.212 km] Berlin Hbf -> Dresden Hbf -> München Hbf -> Ulm Hbf -> Karlsruhe Hbf -> Freiburg Hbf --> Berlin Hbf
[4/280 vol./1261.152 km] Berlin Hbf -> Würzburg Hbf -> Frankfurt Hbf -> Mainz Hbf -> Kassel-Wilhelmshöhe --> Berlin Hbf
[5/165 vol./1291.655 km] Berlin Hbf -> Mannheim Hbf -> Nürnberg Hbf --> Berlin Hbf
OPTIMIZATION RESULT: 5 tours | 6857.639 km.